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Contactless viscosity measurement by oscillations of gas-levitated drops
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A recently demonstrated aerodynamic levitation technique is used to perform contactless viscosity measure-
ments. Classical models dealing with free oscillations of droplets without gravity cannot correctly describe the
correspondence between damping coefficient and viscosity. An energetic approach taking into account the
shape of the drop, and the velocity field of the liquid inside the drop, is introduced, leading to good agreement
between experimental measurements and known viscosities of glycerol-water mixtures. Nonlinear effects are
also investigated and experimental results are compared with the theory of anharmonic oscillations.

PACS number~s!: 47.27.Wg, 47.55.Dz, 47.20.Gv, 47.80.1v
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I. INTRODUCTION

The gas-levitated droplet technique has been develope
order to perform contactless processing and to improve
homogeneity of glass@1,2#. More recently, it has been ex
ploited to perform contactless measurement of physical p
erties of liquids ~such as surface tension and viscos
@3–5#!. To study the solidification process of alloys, the a
sence of contact, which is a major source of heterogene
nucleation, allowsin situ measurements of bulk viscosity an
surface tension.

Compared with the magnetic levitation technique, wh
has been used to perform contactless measurement of su
tension@6,7#, viscosity in microgravity@8#, density, and en-
thalpy @9#, the gas-film-levitation technique is suitable f
insulating liquid materials. Moreover, dissipation measu
ments, even in a liquid metal drop, will hit the viscosi
parameter directly instead of a combination of viscosity a
Joule dissipation due to eddy currents@8#. In order to mea-
sure surface energy and viscosity of liquids, one can st
droplet oscillations. The response of the droplet triggered
a given frequency exhibits a resonance. In earth’s grav
tional field, the position of the resonance peak is governed
surface energy~restoring force! and density~inertial effect!,
whereas the width of this peak is related to the dissipa
terms, namely, the viscosity of the liquid. In this paper,
focus our attention on the determination of viscosity of
oscillating droplet in an external gravitational field. W
stress the fact that what we are discussing here is the d
mation amplification of our droplet under vibrational excit
tion of the setup. As mentioned in our previous paper@10#,
this is evocative of a Faraday instability.

Lamb @11# ~see also Ref.@12#! gave the resonance mod
frequenciesf r and resonance peak widthD f r for a free os-
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cillating drop of volumeV, radiusR, surface energys, den-
sity r, and viscositym, in the absence of gravity. For th
model , he obtained

f r5Al ~ l 21!~ l 12!s/~3rpV!, ~1.1!

D f r5~ l 21!~2l 11!m/~2prR2!.

Very few systematic experiments exist on the variation
the oscillating modes under gravity with respect to volume
nature of the liquid@3,4#. With the magnetic levitation tech
nique, the effects of the magnetic and gravitational fields
the oscillation frequencies have been calculated@13# allow-
ing an accurate surface tension measurement@6,7#. However,
no explanation has been proposed for the effect of the gr
tational field on the width of the resonance peak. In t
present paper, the effect of gravity and gas flux on the eq
librium shape is evaluated. The influence of the drop
shape on the resonance frequency is investigated, taking
account the real shape of the droplet instead of the ellipso
approximation used in Ref.@4#. An energetic approach lead
to the interpretation of the viscous dissipation. For large
citation amplitude, nonlinear effects, theoretically predict
in Ref. @10#, are also investigated. Systematic experime
with droplets of varying volume and viscosity are perform
and the results are compared with these simple analy
models.

II. EXPERIMENTAL SETUP AND MATERIALS

The apparatus is schematically depicted in Fig. 1, a
described in detail in Ref.@4#. A liquid droplet stands on a
gas layer coming through a pressurized porous memb
~diffuser!. Only thel 52 mode~oscillation between probate
and oblate shapes! has been studied because of its relat
high oscillation amplitude.

The drop is excited through an electromagnetic vibra
2669 ©2000 The American Physical Society
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providing vertical oscillation to the system~diffuser-drop!.
Frequency and amplitude of the excitation are adjustable
wide range~from 1 to 100 Hz for the frequency and 0 t
100 mm for the amplitude!. A video system allows drop
profile measurements with an accuracy of 10mm. Scanning
in frequency gives the resonance peak. Temperature is m
sured by means of a thermocouple inserted in the diffus

In this work, experimental measurements have been
formed at room temperature (29861 K) on drops of water-
glycerol mixtures with various fractions of glycerol~from
20% to 85%!. The physical parameters for water and gly
erol are listed in Table I. The volume of the drop varies fro
V510 m l to V5100 m l. Some experiments were pe
formed on calibrated silicon oil (m510.1 mPa s, r
5900 kg/m3, s50.017 J/m2 at 298 K! provided by
Brookfield Ltd.

III. EXPERIMENTAL RESULTS

The width of the resonance peak was measured at
height. Its variation with the droplet volume is shown in F
1. Equation~1.1! with no gravity effects is unable to describ
the results. As demonstrated in@4#, gravity effects on the
drop shape have to be taken into account, because the r
of the droplet is close to the capillary length for wate
glycerol (l c5As/rg52.5 mm, g being the gravity accel-
eration!.

A typical resonance peak is plotted in Fig. 2 for two d
ferent amplitudes of excitation. The small amplitude peak
symmetrical and accurately fitted by a simple viscoela
model. However, if the excitation amplitude is too large, t
resonance peak starts to be distorted, leading to a hyste
in the amplitude-frequency diagram. This phenomenon
characteristic of nonlinear effects associated with anhar
nicity. These first results underline the need for theoret
approach better adapted to gas-film-levitated drop conc
ing ~a! the nonspherical equilibrium shape,~b! the resonance

FIG. 1. Width of the resonance peak of a 30% glycerol drop
as a function of the volume: experiments~dots! and theory from Eq.
~1.1! ~line!.

TABLE I. Physical properties of water and glycerol at 298 K.

Viscosity Surface energy Density
~mPa s! (J m22) (kg m23)

Water 1 0.073 1000
Glycerol 1700 0.063 1273
a

a-
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-
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frequency,~c! the resonance peak width, and~d! the effect of
excitation amplitude on the peak shape.

IV. EQUILIBRIUM SHAPE OF THE LEVITATED
DROPLET

A. Laplace equation

In order to understand the parameters influencing
equilibrium shape, a comparison is made between the th
retical shape of a sessile drop with a 180° contact angle
photography of the real shape.

The shape of a sessile drop with 180° contact angle
pends only on the surface tensions, the densityr of the
liquid, and the gravityg. At each point of the surface, th
Laplace equation has to be satisfied. Due to the revolu
symmetry axis, the Laplace equation is equivalent to~see
Ref. @14#!

du

ds
52

sinu

X
1

rg

s
Z1

2

r c
. ~4.1!

u is the angle defined in Fig. 3,s is the curvilinear coor-
dinate,r c is the radius of curvature at the top of the drop,X
is the horizontal coordinate, andZ is the vertical coordinate
The profile of the sessile drop is calculated by solving E
~4.1! numerically at each point of the droplet surface a
adjustingr c to obtain the correct volume.

In Fig. 4, it can be observed that the real shape of
levitated drop is almost exactly fitted by the shape of a 18
contact angle sessile drop. The first consequence is tha
equilibrium shape of the drop depends only on the ra
rg/s and is barely perturbed by the experimental conditio
~gas flux, diffuser!. The second consequence is the possi
ity of measuring the ratiorg/s and deducing the surfac

t
FIG. 2. Resonance peak of a gas-levitated droplet for low~a!

and high ~b! excitation amplitudes. Note the hysteretic behav
present in~b!.

FIG. 3. Geometrical definition for the profile description~see
Sec. IV!: ~a! profile solution of Laplace equation@Eq. ~4.1!# and~b!
profile described with the Archimedean arc@Eq. ~4.2!#.
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PRE 61 2671CONTACTLESS VISCOSITY MEASUREMENT BY . . .
tension, just by fitting the calculated profile with the re
profile, which is much more accurate than measuring
sessile drop contact angle.

B. Variational approach with an Archimedean spiral arc

Although it is difficult to find an analytical solution of Eq
~4.1!, a numerical solution is not quite satisfactory. Howev
it seems that a flattened Archimedean arc could describe
curately the profile of the levitating drop. The equation
such a profile would be

x~a!5aa cosa,
~4.2!

z~a!5baa sina.

Parametera describes the size and parameterb the flat-
tening of the shape.a varies from 0 toa0 ~corresponding to
the top of the drop wheredz/dx50) ~see Fig. 3!. If a andb
are properly chosen, the Archimedean arc can fit the
profile. At that point,a and b have no physical meaning
which is not satisfactory. One would like to have an estim
tion of these parameters as a function of the drop prope
s, r, g, andV. The variational approach of Ref.@4# devel-
oped with an ellipsoidal profile can be used with the mo
realistic profile described by Eq.~4.2!. The volume is given
by

V5E
0

a0
@x~a!2x~a0!#2pab@sina1a cosa#da.

~4.3!

V is kept constant so that the droplet shape depends
on one parameter, chosen here to beb. The total energy of
the system at rest can be calculated as the sum of gra
tional potential and surface energy:

E5sS1rVgzm . ~4.4!

zm is the droplet center of mass, which is the solution
the equation

FIG. 4. Comparison between the experimental profile (333),
the profile solution of Laplace equation~gray line!, and the profile
resulting from the variational approach using archimedian sp
~black line!.
l
a

,
c-

f

al

-
es

e

ly

ta-

f

E
0

a0
@z~a!2zm#@x~a!2x~a0!#2pab@sina1a cosa#da

50. ~4.5!

The energy minimum corresponds to a stable equilibri
position atb5beq . The same strongly asymmetric profile a
in Ref. @4# is observed. For a given volume and a liquid
known density and surface tension, the value ofbeq can be
calculated, leading to the determination of the equilibriu
droplet profile. Figure 4 compares the experimental profi
the exact profile derived from the Laplace equation, and
profile determined with the variational approach. The reas
ably good agreement validates the variational approach.

V. RESONANCE FREQUENCY APPROXIMATION:
COMPARISON BETWEEN THE REAL

AND THE ELLIPSOIDAL SHAPE

Once the energetic profile is determined, the resona
frequency is given by the stiffness of the energy curve, i
the second derivative ofE. In the case of an ellipsoidal shap
@4#, the derivation parameter is obvious: the center of grav
position. With such a geometry, this point corresponds to
center of symmetry. The surface forces and the volu
forces can be assumed to be applied at that unique p
However, in the case of a nonsymmetric shape, such as
one induced by gravity, this reduction to a single resulti
force applied at the center of gravity is no longer possib
Nevertheless, the resulting force is along the vertical a
The dynamics of the system will be approximated by t
dynamics of a specific point along thez axis whose position
between the two poles of the droplet will be chosen in or
to get the closest fit between calculated and experime
frequencies. The aim of the present simplified model is
predict the influence of the volume on the characteristics
the resonance.

Figure 5 shows the resonance frequency as a functio
the droplet volume. Assuming either an ellipsoidal shape
an approximation with Archimedean spirals leads to identi
results since the two curves are close and parallel. On
basis, the droplet shape will be described as ellipsoidal in
remaining part of this paper.

l

FIG. 5. Comparison of the experimental results for the re
nance frequency with the estimation from variational approac
using ellipsoidal~- - -!, or Archimedean shapes~—!. The solution
given by Eq.~1.1! is shown for comparison.
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VI. VISCOSITY APPROXIMATION: AN ENERGETIC
APPROACH

The width of the resonance peak is associated with
dissipation processes occurring within the vibrating drop
The dissipated power will be described first in a purely p
nomenological manner using a viscoelastic model~A!. A
more direct interpretation will be given thanks to an appro
mate solution of the Navier-Stokes equation for the flu
flow in the droplet~B!.

A. The viscoelastic model

For amplitude small enough to stay in the linear doma
the vibrating droplet can be modeled by the classical v
coelastic harmonic oscillator, whose motion is governed

R̈p12lṘp1v0
2Rp5

F

M
cosvt. ~6.1!

This gives

Rp5Rp0
1DRp cos~vt1w!, ~6.2!

DRp5
F

2Mv0A~v2v0!21l2
,

whereRp is the polar radius of the ellipsoid,M the mass of
the system,l5pD f r the dissipation coefficient,v052p f r
the resonance angular frequency,F the amplitude of the ex-
citation force, v the angular frequency of the excitatio
force,Rp0

the polar radius at equilibrium introduced in Re

@4#, andDRp the amplitude of the oscillations. This assum
tion is supported by the excellent correlation between
experimental resonance peak and Eq.~6.2! for small ampli-
tudes of excitations~see Fig. 2!.

The dissipated viscous powerPv at the resonance fre
quency is given by~see Ref.@16#!

^Pv&5Mlv0
2DRp

2 . ~6.3!

B. The velocity field into the oscillating droplet

The displacement field of the liquid will be calculate
when the droplet’s north pole oscillates around its equi
rium position at the resonance frequencyv0. Between an
oblate and a prolate position,Rp varies fromRp0

2DRp to

Rp0
1DRp . A mathematical transformation that will expan

theZ axis and contract theX andY axes is introduced to give
the displacement field. The viscous dissipated power is t
derived from the Navier-Stokes equations yielding

^Pv&5
3

2
mv0

2V
DRp

2

Rp0

2
. ~6.4!

~The detailed calculation is in the Appendix.! Combining
Eq. ~6.4! and Eq.~6.3! yields the viscosity:

m5
2p

3
Rp0

2 rD f r . ~6.5!
e
t.
-

-

,
-

-
n

-

n

This equation relates the width of the resonance peak to
viscositym of the liquid.

For the limiting case of small oscillations around a sphe
cal position (Rp0

5R), this equation differs from Eq.~1.1!
only by a coefficient 5/3, which is quite reasonable cons
ering the simplicity of our approach. Thus, as gravity~or
droplet volume! increases, viscosity should be interpolat
from Eq. ~1.1! to Eq. ~6.5!.

C. Discussion

Figure 6 shows a good agreement between the meas
and calculatedD f r as a function of the volume for a cali
brated silicon oil drop, whose viscosity is 10.1 mPa s. T
result underlines the necessity to take into account the
tened shape of the drop. The displacement field is not
same for a spherical and an oblate oscillating drop, and t
the relation between peak width and viscosity is also diff
ent.

To validate our setup for viscosity measurements, exp
ments were performed on drops of water-glycerol with va
ous fractions of glycerol~from 20% to 85%!. For each drop,
the viscosity calculated by Eq.~6.5! @with the value ofRp0

resulting from the minimization of the energy~see Ref.@4#!
and the measurement ofD f r ] is compared with data ex
tracted from the literature@15#. Figure 7 displays the calcu
lated and the real viscosity versus the fraction of glycer
The good correlation between calculated and real visco
shows that contactless viscosity measurements can be
formed with this setup with an accuracy of about 20%.

VII. NONLINEAR EFFECTS

In order to explain the distortion of the resonance pe
introduced in Sec. III~see Fig. 2!, let us start with a geo-
metrical consideration: an oblate ellipsoid has its maxim
total curvature along the equator whereas a prolate ellips
concentrates the maximum curvature at the two poles.
oblate drop stores more surface energy than the prolate
This is confirmed by the asymmetric profile of the potent
energy curve calculated in the variational approach in S
V.

As mentioned in Ref.@4#, we stress that the energy depe

FIG. 6. Comparison of the experimental results for the width
the resonance peak with the estimation from variational approa
using ellipsoidal shapes. The solution given by Eq.~1.1! is shown
for comparison~– – –!.
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PRE 61 2673CONTACTLESS VISCOSITY MEASUREMENT BY . . .
dence on polar-radius coordinates is not symmetrical aro
its minimum: this means that the drop behaves as a sp
easier to expand than to compress~in terms of the polar
radius!. The viscoelastic model can then be modified by
troducing anharmonic terms. The relation between the fo
F and the deformationDRp of such a spring would be

F5v0
2MDRp1aMDRp

21bMDRp
3 , ~7.1!

M being the mass of the system,l the dissipation coeffi-
cient, v0 the resonance angular frequency,F the amplitude
of the excitation force, anda and b the second and third
order anharmonicity coefficients. The corresponding eq
tion of motion is

R̈p1Ṙp2l1v0
2Rp1aRp

21bRp
35

F

M
cosvt. ~7.2!

This is the anharmonic oscillator equation treated by L
dau and Lifshitz in Ref.@16#. An expansion to third order in
e5v2v0 gives the relation between the forced oscillati
frequencyv and amplitudeDRp :

e56AS F

2Mv0DRp
D 2

2l21S 3b

8v0
2

5a2

12v0
3D DRp

2 .

~7.3!

The first term is the classical harmonic oscillator equ
tion. The nonlinear effect is given by the last term of th
equation, which is negligible for small amplitude of excit
tion. But asF ~or DRp) increases, the peak is shifted an
then distorted, leading to the appearance of hysteresis w
DRp(v) exhibits three values for a givenv. In Fig. 8, it can
be observed that when frequencies are scanned upward
system follows the resonance curve until pointA ~angular
frequencyvsup), where it has no other possibility than t
jump to pointB. In contrast, for a downward scanning, b
tweenB andC, the system usually stays on the upper bran
up to pointC ~angular frequencyv in f) and then falls down
from C to D. The amplitude of hysteresis is set to be t
difference between the angular frequencies atA and D:
vsup2v in f .

Since the amplitudea of the excitation oscillations im-
posed at the south pole is much smaller than the reson

FIG. 7. Viscosity of a 50m l water-glycerol droplet at various
fractions of glycerol, analyzed using the viscoelastic model@Eq.
~6.5!# compared with data from the literature~Ref. @15#!.
d
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amplitudeDRp , one can simultaneously assume a nonlin
expression such as Eq.~7.1! for the response and a linea
relation between the forceF and the amplitudea. The effec-
tive stiffness of the droplet is given byMv0

2. Therefore, one
can write

F5Mv0
2a. ~7.4!

The critical forceFc and excitation amplitudeac at which
this hysteresis appears are given by~Ref. @16#!

Fc
25

32v0
2M2l3

3A3U 3b

8v0
2

5a2

12v0
3U

and ac
25

32l3

3A3v0
2U 3b

8v0
2

5a2

12v0
3U

.

~7.5!

In the experiments, the frequencyv and the amplitudea are
the control parameters.

The eigenfrequencyv0, calculated using the variationa
approach agrees with the measured value given by the p
tion of the peak@4#. The coefficientsa andb are estimated
from the anharmonicity of the energy profile. Note that t
deformed resonance peak is bent toward negative freque
shifts. As mentioned in Ref.@10#, this corresponds to a nega
tive third order anharmonic coefficientb, in accordance with
the energy profile. The critical amplitude above which hy
teresis appears is related to the dissipation coefficienl
5pD f r through Eq.~7.5!. The dissipation coefficient is re
lated to the viscosity of the droplet through Eq.~6.5! derived
from the energetic approach of Sec. VI.

Above ac , a hysteresis defined as a frequency band w
three possible solutions~see Fig. 8! can be observed. A
rough estimate for the hysteresis in frequency can be gi

FIG. 9. Hysteresis in the frequency-amplitude diagram a
function of the excitation amplitude: comparison between exp
ments and theoretical values.

FIG. 8. Frequency-amplitude diagram for different excitati
force F. With increasing excitation the peak becomes more a
more distorted and finally hysteretic behavior appears.
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by the distance between@CD# and@BA# on Fig. 8. In Fig. 9,
the experimental hysteresis is plotted versus the excita
amplitude. For relatively low amplitudes, the estimate is
good agreement with experiments. But for amplitudes lar
than 2.5 mm, the hysteresis is less important than predic
by this simple model. In Fig. 10, the experimental hystere
curve is compared with the theoretical one given by E
~7.3!. The agreement is strikingly good. However, the jum
from the upper branch to the lower branch, when scann
downward in frequency, occurs well before the ultimate lim
of the three valued domain. This is the origin of the discre
ancy exhibited in Fig. 9.

The dependence on viscositym of the critical amplitude
ac above which hysteresis occurs~or equivalently of the
critical excitation forceFc) is shown in Fig. 11. For low
viscosity droplets~less than 5 mPa s!, the experimental criti-
cal amplitude is very accurately described by Eq.~7.5!. For
viscosities larger than 5 mPa s, hysteresis is observed on
much larger excitation amplitude. This transition also cor
sponds to an overall instability of the droplet position: t
drop starts to bounce like a ball. Qualitatively, this can
understood as follows: when the excitation amplitudea
reaches a valuea* ~of the order 4 mm, Fig. 11! a new
composite mode is excited. For viscosities larger th
;5 mPa s, this will occur before reaching the thresholdac
for the ‘‘pure’’ deformation mode@ac}l3/2, Eq. ~7.5! or the
solid curve in Fig. 11#. In our view, this new mode com
prises two coupled components: deformation and bounc

FIG. 10. Distorted resonance peak: comparison between ex
ments and Eq.~7.3!.

FIG. 11. The viscosity dependence of the critical excitation a
plitude: comparison between theory from Eq.~7.5! and experi-
ments. Dashed line stands fora* , where new composite mod
~bouncing1 deformation! sets in.
n
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This is likely to be describable, again, in terms of anh
monic oscillations, but with different dynamical paramete
(M ,v0 ,a,b, etc.!. If we consider that the main change is
v0, then Eq.~7.5! indicates thatac increases whenv0 de-
creases, in agreement with Fig. 11.

Finally, Fig. 12 shows a comparison between experim
tal and theoretical hysteresis curves just above the crit
amplitudeac . It shows that the present theory with no a
justable parameters describes correctly both the harm
and the anharmonic effects.

VIII. CONCLUSION

The main difference between the gas-film-levitation e
perimental conditions and the theory of free oscillation p
sented in the Introduction is the experimentally observ
nonspherical shape of the droplet at equilibrium. A
Archimedean arc can accurately represent the real shape
leads to results similar to an ellipsoid of revolution conce
ing the resonance frequency. Thus, an ellipsoidal approxi
tion can be used to model the dynamic of the droplet.

A relation between the viscosity and the width of the me
sured resonance peak has been derived. It takes into acc
both shape and boundary conditions and can lead to accu
contactless measurement of dynamic viscosity of liqu
from 2 mPa s to 150 mPa s.

The asymmetric profile of the energy curves points to
nonlinear character of the oscillations due to anharmonic
A detailed description of the nonlinearity has been propo
to explain quantitatively the distortion of the peak for hig
amplitudes and the occurrence of hysteretic behavior.

The experimental setup described and validated in
paper can be a tool to measure surface tension and visc
accurately. Contactless viscosity measurements could be
ful to study the rheology of materials in the semisolid sta
without perturbing the dynamics of crystallization~no con-
tainer!. Suspensions could also be studied without the c
sical boundary layer problems that frequently appear in C
ette rheometry~no container and therefore no heterogeneo
nucleation; for a recent preliminary report, see Ref.@17#!.
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APPENDIX: CALCULATION OF THE VISCOUS
DISSIPATED POWER

The viscous dissipated power is calculated by writing
velocity field inside the droplet, which itself is evaluate
from the displacement field.

If M p(xp ,yp ,zp) is a point of the prolate shape
Mo(xo ,yo ,zo), a point of the oblate shape, andM (x,y,z), a
point of the equilibrium shape, to ensure volume conser
tion, we have

xp5xoA21/2,

yp5yoA21/2 with A5
Rp0

1DRp

Rp0
2DRp

, ~A1!

zp5zoA.

The displacement field resulting from the oscillation b
tween the prolate and the oblate position is

x~ t !5
xp1xo

2
1

xp2xo

2
sin~vt !5x1x sin~vt !

12AA

11AA
,

y~ t !5
yp1yo

2
1

yp2yo

2
sin~vt !5y1y sin~vt !

12AA

11AA
,

~A2!

z~ t !5
zp1zo

2
1

zp2zo

2
sin~vt !5z1z sin~vt !

A21

A11
.

n-

er
e

-

-

The velocity field is the first derivative of the displac
ment field:

vx~ t !5xv cos~vt !
12AA

11AA
,

vy~ t !5yv cos~vt !
12AA

11AA
, ~A3!

vz~ t !5zv cos~vt !
A21

A11
.

The divergence of the velocity field is not strictly zero
expected for a noncompressible fluid, but is negligible co
pared to any of its components. The viscous dissipa
power can be derived from the Navier-Stokes equations~see,
for instance, Ref.@12#!:

^Pv&5
v0

2pE0

2p/v0m

2EV
S ]v i

]xj
1

]v j

]xi
D 2

dVdt, ~A4!

giving

^Pv&5
v0

2pE0

2p/v0m

2
VF S 2

]vx

]x D 2

1S 2
]vy

]y D 2

1S 2
]vz

]z D 2Gdt.

~A5!

For small oscillations (DRp /Rp0
,,1), a first order

power expansion inDRp /Rp0
gives for the viscous dissi

pated power

^Pv&5
3

2
mv0

2V
DRp

2

Rp
0
2

. ~A6!
-
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